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Abstract. The sum of two algebraic numbers is again algebraic. In

this paper we investigate the possible degrees of the sum of two algebraic

numbers α and β. We fully solve this problem in the abelian case, and

we work out some examples in the non-abelian case.
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1. Introduction

The study of polynomial equations and their roots has long been a central

focus of mathematics. Galois theory was developed in the 19th century as

a way to connect the structure of roots of polynomial equations—called

algebraic numbers—with the symmetries of fields. In this paper, we concern

ourselves with the question of the structure of sums of algebraic numbers,

utilizing Galois theory to find our answer.

Definition 1.1. An algebraic number is a complex number α that is the

root of some nonzero polynomial with rational coefficients.

Definition 1.2. If α is an algebraic number, there exists a unique monic,

irreducible polynomial with rational coefficients with α as a root. This
1
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polynomial is called the minimal polynomial of α. The degree of α is

defined as the degree of its minimal polynomial.

Definition 1.3. A Galois extension E/F is called an abelian extension

if its Galois group is abelian.

This paper aims to answer the question of which degrees of sums of al-

gebraic numbers are possible. In particular (since the degree of α is the

same as the degree of −α), we want to investigate which triples of numbers

(a, b, c) are possible as degrees of algebraic numbers α, β, and γ such that

α+ β + γ = 0.

Several other authors have made progress on this question. Isaacs [4]

proved that if algebraic numbers α and β have coprime degrees m and n,

then α + λβ has degree mn for any nonzero rational number λ (the paper

also discusses this result in extensions of positive characteristic rather than

characteristic zero). A paper by Drungilas, Dubickas, and Smyth [2] further

investigates this question in depth and provides all examples of achievable

triples where α and β are at most degree 6. Virbalas [6] expands on this

work by completely determining the possible values for the degree of the

compositum of two number fields of the same prime degree.

Our paper focuses specifically on answering this question in the context

of abelian extensions, and we are able to fully answer it in this case.

Theorem 1.4. Let a, b, c be positive natural numbers. There exist algebraic

numbers α, β and γ satisfying α+β+γ = 0 of degrees a, b and c respectively

inside an abelian extension K/Q if and only if a | bc, b | ac and c | ab.

In order to construct these algebraic numbers, we require the foundational

result that every finite abelian group is a Galois group of some field exten-

sion. As such, extending our results to the non-abelian case would seem to

require further knowledge about the open “inverse Galois problem” that is

not yet known.

2. Preliminaries

To begin, we offer some preliminary results about Galois extensions and

symmetries of algebraic numbers.

Lemma 2.1. Let α ∈ K/Q, a Galois extension with G = Gal(K/Q). The

set of numbers of the shape σ(α) over σ ∈ G are exactly the roots of the

minimal polynomial of α. In particular, the degree of α is the size of the set

{σ(α) | σ ∈ G}. This is often stated as “the Galois group acts transitively

on the roots of an irreducible polynomial.”
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Proof. Consider the orbit of α under the action of G, OrbG(α) = {σ(α) |
σ ∈ G}. The stabiliser of α, StabG(α), consists of all elements of G that fix

α. By the Orbit-Stabiliser Theorem,

|G| = |OrbG(α)| · |StabG(α)|

and since K/Q is Galois, we know that |G| = [K : Q].

Since α is algebraic over Q, we can consider the ring of polynomials in α

with rational coefficients as Q[α] = Q(α). Let p(x) be the minimal polyno-

mial of α over Q. We know that deg(p) = [Q(α) : Q].

Observe that StabG(α) is precisely the Galois group of K over Q[α]. Now,

for any f(α) ∈ Q[α], where f is a polynomial with rational coefficients, we

have:

σ(f(α)) = f(σ(α)) = f(α)

So σ fixes every element of Q[α]. Conversely, if σ fixes every element of

Q[α], it must fix α since α ∈ Q[α]. Therefore, |StabG(α)| = [K : Q[α]] =

[K : Q(α)].

By the multiplicativity of field extension degrees:

[K : Q] = [K : Q(α)] · [Q(α) : Q]

Hence we have that

|OrbG(α)| = [Q(α) : Q] = deg(p)

This proves that the number of conjugates of α, or |OrbG(α)|, is equal to
the degree of its minimal polynomial.

To show that these conjugates are exactly the roots of p(x), we argue:

• All conjugates of α are roots of p(x), as p(σ(α)) = σ(p(α)) = σ(0) =

0 for any σ ∈ G.

• The number of conjugates equals the degree of p(x), so these must

be all the roots.

Thus, our proof demonstrates not only that the conjugates of α are the

roots of its minimal polynomial, but also that the Galois group acts transi-

tively on these roots. □

Lemma 2.2. Let α, β ∈ K/Q, a Galois extension with G = Gal(K/Q). The

number of elements of the set of pairs {(σ(α), σ(β)) | σ ∈ G} is equal to the

degree of Q(α, β)/Q.

Proof. Let K/Q be a Galois extension with Galois group G = Gal(K/Q),

and let α, β ∈ K. The number of distinct pairs {(σ(α), σ(β)) | σ ∈ G}
corresponds to the size of the orbit of the pair (α, β) under the action of G,
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which is given by |G|
|StabG(α,β)| , where StabG(α, β) is the stabiliser of the (α, β)

pair in G. StabG(α, β) is exactly the group Gal(K/Q(α, β)). Therefore the

number of distinct pairs is |G|
|StabG(α,β)| = [Q(α, β) : Q]. □

Definition 2.3. We say an algebraic number α is abelian if α ∈ K for

some Galois extension K/Q with abelian Galois group.

Lemma 2.4. The set of abelian algebraic numbers is a field.

Proof. Let α ∈ K and β ∈ K ′ be two abelian algebraic numbers, such that

K/Q and K ′/Q are abelian extensions. Consider the composite field K ′K

over Q: it is Galois over Q with Galois group isomorphic to a subgroup of the

direct product Gal(K/Q) ×Gal(K ′/Q). (A proof of this fact can be found

in Dummit & Foote Section 14.4, Proposition 21[3].) This direct product

is abelian, so any subgroup is also abelian. The Galois group of K ′K over

Q is then abelian, and α, β are both contained in a larger abelian extension

field. Thus, α + β and αβ are both contained in K ′K, meaning that the

set of algebraic numbers is closed under field operations and is therefore a

field. □

Lemma 2.5. If α, β are algebraic numbers of degrees m and n, then the

degree of Q(α, β) over Q is a multiple of both m and n, and less than or

equal to mn.

Proof. We have that αi for 0 ≤ i < m is a basis for the field extension

Q(α)/Q; similarly, βj for 0 ≤ j < n is a basis for Q(β)/Q. Then, the set

{αiβj} spans the space Q(α, β)/Q, and the degree of this field extension is

therefore less than or equal to mn.

By the multiplicativity of degrees of field extensions, [Q(α, β) : Q] =

[Q(α, β) : Q(α)][Q(α) : Q] = [Q(α, β) : Q(α)]m, so m | [Q(α, β) : Q].

Similarly, n | [Q(α, β) : Q]. Thus, m and n both divide [Q(α, β) : Q]. □

Lemma 2.6. Let α, β be two algebraic numbers over Q, with conjugates

{αi} and {βj} respectively. If the sums αi + βj are distinct for all i, j, then

Q(α+ β) = Q(α, β).

Proof. Let K be the Galois closure of Q(α, β)/Q. Suppose σ is an automor-

phism of K that fixes Q(α, β). Then, σ(α) = α and σ(β) = β. Therefore,

σ(α+ β) = α+ β, and σ also fixes Q(α+ β).

Now, suppose σ is an automorphism of K that fixes Q(α + β), such

that α + β = σ(α + β) = σ(α) + σ(β). Since σ permutes the roots of

polynomials, σ(α) must be equal to αi for some i, and σ(β) = βj for some

j. So, σ(α + β) = αi + βj = α + β. But, since the sums of the conjugates
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of α and β are distinct by assumption, we must have αi = α and βj = β.

Thus, σ(α) = α and σ(β) = β, so σ also fixes Q(α, β).

We have shown that any automorphism of K fixes Q(α, β) if and only if

it fixes Q(α + β); in other words, we have shown that Gal(K/Q(α, β)) =

Gal(K/Q(α+β)). By the fundamental theorem of Galois theory, the group

of automorphisms that fix a subfield determine the subfield. Since the group

of automorphisms of K that fix Q(α, β) and the group of automorphisms of

K that fix Q(α+β) are equal, we must have that the corresponding subfields

are equal. Thus, Q(α, β) = Q(α+ β) and we are done. □

Finally, we present two fundamental results without proof.

Lemma 2.7. For every finite abelian group G there exists a Galois extension

K/Q such that Gal(K/Q) = G.

Proof. A proof can be found in Dummit & Foote Section 14.5, Corollary 28

[3]. □

Theorem 2.8 (Normal basis theorem). For every Galois extension K/Q
there exists an element θ ∈ K such that the elements {σ(θ) | σ ∈ G} are a

basis for K/Q as a vector space.

Proof. A proof can be found in J.S. Milne’s Fields and Galois Theory, page

68 [5]. □

With these results, we can begin to answer questions about the sums of

algebraic numbers. Importantly, note that Q(α+β) is a subfield of Q(α, β),

meaning we can use results from Galois theory to investigate the degree of

α+ β.

3. Proof of Main Theorem

We begin with a group-theoretic result that will be crucial in our analysis:

Lemma 3.1. If G is a finite group, for subgroups H1 and H2 of index m

and n where H1 is normal, the possible indices of H1∩H2 ⊆ G are precisely

the natural numbers d such that lcm(m,n) | d | mn. In particular, if G is

abelian, the possible indices of H1 ∩ H2 ⊆ G are precisely the numbers d

above.

Proof. Since H1 is normal, H1H2 is a subgroup of G. By the second (dia-

mond) isomorphism theorem, we have the following lattice of subgroups:
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G

H1H2

H1 H2

H1 ∩H2

m
d1

= n
d2m n

d1 d2

d2 d1

From this, we see that [G : H1 ∩H2] = md2 = nd1, so both m and n divide

the index and thus lcm(m,n) divides the index.

In addition, the index of H1H2 in G must be an integer, so d1 must divide

m and d2 must divide n. Thus, nd1 and md2 must divide mn, but these are

equal to [G : H1 ∩H2]. So, [G : H1 ∩H2] | mn and we are done. □

This lemma provides insight into the structure of subgroup intersections,

which we can apply to Galois theory due to the correspondence between

subgroups of the Galois group and intermediate fields. We now translate

this group-theoretic result into the language of field extensions:

Lemma 3.2. Let α, β ∈ K where K/Q is an abelian extension. If Q(α)/Q
has degree m and Q(β)/Q has degree n, the possible degrees of Q(α, β)/Q
are exactly the values of d with lcm(m,n) | d | mn.

Proof. By the previous Lemma 3.1 and the duality of the lattice of subgroups

of Gal(K/Q) and the lattice of subfields of Q(α, β), we must have that the

possible degrees of Q(α, β)/Q are exactly the values of d with lcm(m,n) |
d | mn.

We now shall show that any number d of the form above is achievable

by some α and β given m and n. Let us begin by fixing some d such that

lcm(m,n) | d | mn.

Let H = Cmn/d, the cyclic group of order mn/d. Then, let H1 = H ×
Cd/m

∼= Cn, H2 = H × Cd/n
∼= Cm, and G = H1 ×H2

∼= Cmn. We see that

H1 has index m in G, H2 has index n in G, and H = H1 ∩H2 has index d

in G.

By Lemma 2.7, there is some (abelian) Galois extensionK/Q with (abelian)

Galois group G. The fundamental theorem of Galois theory then tells us

that there exist intermediate fields E1 and E2 between K and Q corre-

sponding to the groups H1 and H2. By the primitive element theorem (see

Dummit & Foote Section 14.4 Theorem 25 [3]), there exist α and β such
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that E1 = Q(α) and E2 = Q(β); these numbers are necessarily algebraic

since they generate finite extensions of Q (their Galois groups are finite).

Then, the corresponding fixed field of the subgroup H = H1 ∩ H2 is the

composite of E1 and E2; namely, Q(α, β). This field is Galois over Q since

it is an intermediate field of an abelian extension. The degree Q(α, β)/Q is

then equal to the index of H1 ∩H2 in G, which is exactly d. Thus, we have

found algebraic numbers α and β of degrees m and n respectively such that

Q(α, β)/Q has degree d. □

Now, we demonstrate a property of Galois conjugates to further our un-

derstanding of the behavior of algebraic numbers:

Lemma 3.3. The difference of two Galois conjugates of an algebraic number

cannot be rational.

Proof. Let α = α1 be an algebraic number contained in a Galois extension

K/Q, and let {αi | 1 ≤ i ≤ n} be the finite set of its Galois conjugates.

Suppose αk − αℓ = θ for 1 ≤ k, ℓ ≤ n where θ is rational (and clearly

nonzero); without loss of generality, assume θ is positive. The Galois group

G = Gal(K/Q) acts transitively on the set {αi}, so choose σ ∈ G to be

the automorphism that sends αℓ to the conjugate of α with the largest real

part—call it αr. Then, σ(αk −αℓ) = σ(θ) = θ, since θ is rational. But now,

σ(αk −αℓ) = σ(αk)−σ(αℓ) = σ(αk)−αr, and αr + θ = σ(αk). Thus, σ(αk)

has larger real part than αr, contradicting our choice of σ. This proves the

lemma. □

With this result in hand, we can now prove a key lemma about the degree

of the sum of two algebraic numbers with coprime degrees:

Lemma 3.4. Let α and β be algebraic numbers of degree m and n, each

inside an abelian extension of Q. If gcd(m,n) = 1 then the degree of α+ β

is mn.

Proof. By Lemma 2.5, we see that the degree of Q(α, β) must be exactly

mn. Then, by Lemma 2.6, if the sums of conjugates of α and β are distinct,

then Q(α + β) = Q(α, β) and the degree of α + β is equal to the degree

[Q(α, β) : Q].

We first note that both Q(α) and Q(β) are Galois over Q, as they are

intermediate fields of an abelian extension. Suppose αi+βj = αk+βℓ, where

αi, αk are conjugates of α and βj , βℓ are conjugates of β. Let θ = αi −αk =

βℓ−βj . Since Q(α) is Galois, every conjugate of α is in this field and thus θ

is in the field as well. Similarly, θ ∈ Q(β). By the multiplicativity of degrees,
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we must have then that the degree of θ divides both of m and n. However,

since gcd(m,n) = 1, the degree of θ must be 1 and θ is therefore rational.

By Lemma 3.3, the difference αi − αk cannot be rational, a contradiction.

Therefore, the sums of conjugates are distinct, and the degree of α + β is

mn. □

It is worth noting that the above result also holds for non-abelian algebraic

numbers; this was proven by Isaacs [4]. The proof requires representation

theory, and we do not concern ourselves with it in this paper.

We now have a powerful tool for constructing algebraic numbers with spe-

cific degrees. We thus can extend this result to consider triples of algebraic

numbers that sum to zero:

Lemma 3.5. Let K/Q be an abelian extension, and assume there exist

α, β, γ ∈ K/Q satisfying α + β + γ = 0, of degrees a, b and c respectively.

Similarly, let K ′/Q be abelian and let α′, β′, γ′ ∈ K/Q satisfying α′+β′+γ′ =

0, of degrees a′, b′ and c′ respectively. If gcd(abc, a′b′c′) = 1, there exists an

abelian extension K ′′/Q and α′′, β′′, γ′′ ∈ K ′′ satisfying α′′+β′′+ γ′′ = 0, of

degrees aa′, bb′ and cc′.

Proof. Let K ′′ be the composite field K ′K, and let α′′ = α+α′, β′′ = β+β′,

and γ′′ = γ+γ′. By Lemma 2.4, α′′, β′′, γ′′ are contained inK ′K, which is an

abelian extension ofQ. Note that α′′+β′′+γ′′ = (α+β+γ)+(α′+β′+γ′) = 0.

Since gcd(a, a′) = gcd(b, b′) = gcd(c, c′) = 1, by Lemma 3.4, α′′ has degree

aa′, β′′ has degree bb′, and γ′′ has degree cc′. We are done. □

To complete our toolkit, we need one final result about algebraic numbers

of prime power degrees:

Lemma 3.6. If p is a prime number and s, t, and u are nonnegative integers

with s ≤ t + u, t ≤ s + u and u ≤ t + s, then there exist α, β and γ inside

an abelian extension K/Q satisfying α+ β + γ = 0, of degrees ps, pt and pu

respectively.

Proof. Let G be defined as follows;

G = HA ×HB ×HC ,

where

HA = Cpa

HB = Cpb

HC = Cpc ,
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with a, b, c as nonnegative integers to be chosen later. By Lemma 2.7, there

exists a Galois extension K/Q such that its Galois group Gal(K/Q) is G.

By the normal basis theorem (Theorem 2.8), we can find θ ∈ K such that

σ(θ)’s are all linearly independent, and hence construct α, β as follows:

α =
∑

σ∈HA

σ(θ) and β =
∑

σ∈HB

σ(θ)

Observe that α is exactly fixed by the automorphisms in HA: for τ ∈ G,

τ(α) =
∑

σ∈HA

τ ◦ σ(θ) =
∑

σ∈τ(HA)

σ(θ),

while α =
∑

σ∈HA
σ(θ), so

α = τ(α) ⇐⇒ HA = τ(HA) ⇐⇒ τ ∈ HA.

the same idea applying to τ(β). Hence,

Gα = HA and Gβ = HB,

where Gα = {σ ∈ G : σ(α) = α} and Gβ = {σ ∈ G : σ(β) = β} are the

subgroups of G that fix α and β respectively. Therefore, we have that

deg(α) =
|G|
|Gα|

=
pa+b+c

pa
= pb+c and

deg(β) =
|G|
|Gβ|

=
pa+b+c

pb
= pa+c.

Now we compute the degree of γ = −(α + β). We have deg(γ) =

deg(−(α+ β)) = deg(α+ β). But

α+ β =
∑

σ∈HA

σ(θ) +
∑

σ∈HB

σ(θ)

=
∑

σ∈HA∩HB

2σ(θ) +
∑

σ∈(HA∪HB)\HA∩HB

σ(θ).

For some automorphism τ ∈ G,

τ(α+ β) =
∑

σ∈HA∩HB

2τ ◦ σ(θ) +
∑

σ∈(HA∪HB)\HA∩HB

τ ◦ σ(θ)

=
∑

σ∈τ(HA∩HB)

2σ(θ) +
∑

σ∈τ [(HA∪HB)\HA∩HB ]

σ(θ).

Suppose that τ(α+ β) = α+ β. Looking at the terms with coefficient 2:∑
σ∈τ(HA∩HB)

2σ(θ) =
∑

σ∈HA∩HB

2σ(θ),
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implying that τ maps HA ∩ HB onto itself, i.e., τ(HA ∩ HB) = HA ∩ HB.

For this to be true, we must have τ ∈ HA ∩ HB. Conversely, suppose

τ ∈ HA ∩ HB. Then, τ(α) = α (because τ ∈ HA) and τ(β) = β (because

τ ∈ HB). Therefore τ(α+ β) = τ(α) + τ(β) = α+ β, and hence:

τ(α+ β) = α+ β ⇐⇒ τ ∈ HA ∩HB.

Therefore

Gγ = HA ∩HB = {e},
since the subgroup intersection is precisely {(x, eHB

, eHC
) | x ∈ HA} ∩

{(eHA
, y, eHC

) | y ∈ HB} = {(eHA
, eHB

, eHC
)} where these are the iden-

tities of the subgroups HA, HB, HC respectively. Now,

deg(α+ β) = deg(γ) =
|G|
|Gγ |

=
pa+b+c

1
= pa+b+c,

so we have

deg(α) = pb+c = ps

deg(β) = pa+c = pt

deg(γ) = pa+b+c = pu.

Now it suffices to find a, b, c such that:

b+ c = s

a+ c = t

a+ b+ c = u.

Solving the system above gives:

a = u− s

b = u− t

c = t+ s− u.

Choosing u to be the largest of the exponents (u = a + b + c), we can

always find nonnegative a, b, c ∈ Z which obey the above. □

With these lemmas established, we are now ready to prove our main

theorem. The proof will utilize the tools we’ve developed to construct triples

of algebraic numbers with the desired properties, and show that these are

the only possible configurations in abelian extensions.

Theorem 1.4. Let a, b, c be positive natural numbers. There exist algebraic

numbers α, β and γ satisfying α+β+γ = 0 of degrees a, b and c respectively

inside an abelian extension K/Q if and only if a | bc, b | ac and c | ab.
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Proof. We shall demonstrate the reverse direction first; suppose a | bc, b | ac,
and c | ab. Let p be some prime, and let ea, eb, ec be the largest integers

such that pea | a, peb | b, and pec | c. In this case, we must have pea |
bc = pebpec bc

pebpec . Since
bc

pebpec is an integer not divisible by p, we must have

pea | peb+ec , so ea ≤ eb + ec. Similarly, eb ≤ ea + ec and ec ≤ ea + eb.

Now, by Lemma 3.6, there exist αp, βp, γp inside an abelian extension Kp/Q
satisfying αp + βp + γp = 0 of degrees pea , peb , pec respectively.

We can repeat this process for all primes p dividing one of a, b, and c,

obtaining a collection of triples {αp, βp, γp} ⊂ Kp/Q satisfying the above.

Now, since powers of different primes are coprime, we may progressively

apply Lemma 3.5 to pairs of triples in the collection to obtain α, β, γ inside

an abelian extension K/Q satisfying α+β+γ = 0 of degrees
∏

p p
ea ,

∏
p p

eb ,

and
∏

p p
ec respectively. But these products are precisely a, b and c by our

definitions of ea, eb, and ec. This proves the reverse direction.

We shall now show the forward direction: suppose α, β, γ are algebraic

numbers satisfying α + β + γ = 0 of degrees a, b, and c respectively inside

an abelian extension K/Q. By symmetry, we must only demonstrate that

c | ab. We know that Q ⊂ Q(α + β) ⊂ Q(α, β), and by Lemma 3.2, we

know that Q(α, β)/Q must have degree dividing ab. By the multiplicativity

of degrees, we also know that Q(α+ β) must have degree diving ab as well.

Now, we know that the degree of γ is equal to the degree of −γ = α + β;

thus, the degree of γ, which is c, must divide ab and we are done. □

4. The Non-Abelian Case

If we allow the algebraic numbers to be non-abelian there are several

additional constructions we can make. For example, some possible triples

of degrees for α, β and γ are (3, 3, 6) and (4, 4, 6). These examples are not

possible in the abelian case because the divisibility condition in Theorem

1.4 is not satisfied.

Note that Lemma 2.5 still holds in non-abelian extensions: if α, β are

contained in a Galois extension K/Q, Q(α)/Q has degree m, and Q(β)/Q
has degree n, the degree of Q(α, β)/Q must be some d with lcm(m,n) |
d ≤ mn. Thus, the degree of α + β must be a divisor of some multiple of

lcm(m,n). Beyond this fact, our proofs rely heavily on Lemma 2.7, of which

a generalization is not known for non-abelian groups (the so-called “inverse

Galois problem).

Despite this, we are still able to demonstrate some elementary examples of

triples that are only possible in the non-abelian case. In particular, we will

show that it is possible to find triples α, β and γ of degrees (n, n, n(n− 1)),
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which includes the (3, 3, 6) case, or (n, n, n(n−1)
2 ), which includes the (4, 4, 6)

case.

Lemma 4.1. Let f be an irreducible degree n polynomial, and let α1, . . . , αn

be the roots of n. Suppose that the action of Galois group on the set of roots

is 2-transitive (meaning for every i1 ̸= j1, i2 ̸= j2 ∈ {1, . . . , n} there is some

σ ∈ G where σ(αi1) = αi2 , σ(αj1) = αj2). Then

(i) The degree of αi + 2αj is n(n− 1).

Further, if we assume the Galois group is the symmetric group Sn we have:

(ii) The degree of αi − αj is n(n− 1).

(iii) The degree of αi + αj is n(n−1)
2 .

Lemma 4.2. Suppose a monic, irreducible polynomial f ∈ Q[x] has two

roots α1 and α2 where α2/α1 ∈ Q. Then α2/α1 ∈ {1,−1}.

Proof. Since f is irreducible, it is the minimal polynomial of α1. If m =

α2/α1, then α1 is a root of f(mx), since f(mα1) = f(α2) = 0. Then α1

is a root of the polynomial f(x) − f(mx)
mk , where k is the degree of f . If

m is rational, this polynomial has rational coefficients and degree less then

f . Since f is the minimal polynomial of α1, f(x)− f(mx)
mk must be the zero

polynomial. By plugging in x = 0, we see that f(0)− f(0)
mk = f(0)(1− 1

mk ) = 0.

Since f is irreducible f(0) ̸= 0. This means mk = 1 which means |m| = 1.

Since m is real, m = 1 or −1, as desired. □

Proof of Lemma 4.1. We begin with case (i). Let us verify that for distinct

ordered pairs (i1, j1), (i2, j2),

αi1 + 2αj1 ̸= αi2 + 2αj2

Suppose by contradiction that αi1 + 2αj1 = αi2 + 2αj2 . Then

αi1 − αi2 = 2(αj2 − αj1) = −2(αj1 − αj2)

Because i1 = i2 ⇐⇒ j1 = j2, we have i1 ̸= i2 and j1 ̸= j2. Since the

action of G is 2-transitive we can find a σ ∈ G where σ(αi1) = αj1 and

σ(αi2) = αj2 ; here, σ(αi1 − αi2) = αj1 − αj2 , so αi1 − αi2 and αj1 − αi2 are

conjugates. However the quotient,
αi1

−αi2
αj1

−αj2
= −2, is rational but not equal

to 1 or −1, which contradicts Lemma 4.2. We conclude that αi1 + 2αj1 =

αi2 +2αj2 implies (i1, j1) = (i2, j2), so the elements of the form αi+2αj are

distinct. From the action of G being 2-transitive, we know that elements of

this form (where i ̸= j) are conjugates. So each αi+2αj has exactly n(n−1)

distinct conjugates. Using Lemma 2.1 we see that this implies the degree of

αi + 2αj is n(n− 1).
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Consider now case (ii). We begin similarly: suppose αi1 −αj1 = αi2 −αj2

for distinct ordered pairs (i1, j1), (i2, j2) where i1 ̸= j1 and i2 ̸= j2. Then,

αi1 +αj2 = αj1 +αi2 . Without loss of generality, we can say that j2 ̸= i1 and

j2 ̸= j1 by distinctness of the ordered pairs. Since the Galois group is the

full symmetric group, there exists an automorphism σ that fixes αi1 , αj1 ,

and αi2 , but not αj2 . Applying this automorphism to both sides of the

equation above, we arrive at a contradiction. Thus, αi1 − αj1 = αi2 − αj2

implies (i1, j1) = (i2, j2), and elements of the form αi−αj are distinct. By a

similar argument to case (i), we see that elements of this form have n(n−1)

conjugates, so the degree of αi − αj is n(n− 1).

For case (iii), note that the above gives that αi1 +αi2 = αj1 +αj2 implies

{i1, i2} = {j1, j2} where these are sets rather than ordered pairs. Thus,

elements of the form αi + αj are distinct up to a reordering of i and j.

Elements of this form therefore have degree n(n−1)
2 . □

Importantly, there exist polynomials of every degree with full symmetric

group as Galois group (see Dummit & Foote page 649 [3]). Thus, the triples

(n, n, n(n− 1)) and (n, n, n(n−1)
2 ) are always achievable for every n.

4.1. Example: (3, 3, 6). We proceed using the strategy of case (i) of

Lemma 4.1.

Let α = 3
√
2, and let β be a conjugate of 2α. Both α and β have degree

3, as they are roots of the irreducible cubics x3− 2 and x3− 16 respectively.

Note that β must be of the form 2ω 3
√
2, where ω is a root of x3−1

x−1 = x2+x+1.

We now want to show that γ = α+ β is of degree 6. Let G be the Galois

group of the splitting field of x3−2; then, by transitivity (Lemma 2.1), there

exists some σ ∈ G such that σ(α) = ωα and thus 2σ(α) = β.

Since α is the only real root of x3 − 2, σ(α) is a solution of an irreducible

quadratic in Q(α)[x]; thus, [Q(α, σ(α)) : Q(α)] = 2. Since there are 2

conjugates of α that are not equal to itself, we can deduce that the action

of the Galois group on the roots of x3 − 2 is 2-transitive. Now, using 4.1,

this implies that the degree of α+ 2σ(α), which is just α+ β, is equal to 6.

We are done.

4.2. Example: (4, 4, 6). We now may utilize case (iii).

We start with the following degree 4 polynomial:

f(x) = x4 − x− 1.

We shall show that if α and β are distinct roots of f , then α and β are of

degree 4 and α + β is of degree 6. This can be deduced by computing the
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Galois group of f , which is S4 [1], but we will use a direct computation to

obtain the degree of the numbers.

To begin, given a monic polynomial with integer coefficients and roots

α1, . . . , αk, the polynomial ∏
1≤i<j≤k

(x− (αi + αj))

also has integer coefficients; this follows from an argument of symmetric

polynomials. In particular, for f(x) = x4−x−1 = (x−a)(x−b)(x−c)(x−d),

g(x) = (x−(a+b))(x−(a+c))(x−(a+d))(x−(b+c))(x−(b+d))(x−(c+d))

also has integer coefficients.

Using a numerical approximation, we find that g(x) = x6+4x2− 1. If we

now show that f and g are irreducible, we will have demonstrated that the

degrees of α and β are 4 and the degree of α+ β is 6.

We begin with the irreducibility of f . Consider f̄ = x4 − x − 1 ∈ F2[x].

Note that f̄(0) = f̄(1) = 1, so this polynomial has no roots in F2 and must

split into two irreducible quadratics if it is not irreducible itself. The only

irreducible quadratic in F2[x] is the polynomial x2 + x + 1, and its square

is x4 + x2 + 1 ̸= x4 − x − 1. Thus, f̄ is irreducible in F2[x], meaning f is

irreducible in Z[x] and also in Q[x] by Gauss’ lemma.

Let us now show that g(x) is irreducible. We have g(x) = h(x2) where

h(y) = y3 + 4y − 1. Here, h is irreducible, since it has degree 3 and no

rational roots (using the rational root theorem).

Let g1 be a factor of g and α be a root of g1 (so that it is also a root

of g). Since α2 is a root of h, we know that [Q(α2) : Q] = 3 (since h is

irreducible). We also have that Q(α) ⊃ Q(α2) ⊃ Q, which implies that the

degree [Q(α) : Q] is a multiple of 3. So, the only way g can be reducible is

if it is a the product of two degree 3 polynomials, g1 and g2.

Now we finish with an argument over F3[x]. Since F3 is a field, F3[x] is a

principal ideal domain and thus a unique factorization domain.

Notice that h(2) ≡ 0 mod 3. So (x− 2) is a factor of h(x) mod 3, which

makes (x2 − 2) a factor of g(x) over F3[x]. If we assume g is reducible and

thus g = g1g2 by the above, then this same factorization still holds over

F3[x]. Because 2 is not a square mod 3, x2 − 2 is irreducible over F3[x]. So

x2 − 2 has to divide either g1 or g2. But then
gi

x2−2
is a linear factor of g(x)

over F3[x], which is impossible since it can be verified g has no roots in F3.

Therefore, g(x) must be irreducible.

In conclusion, we have shown that the triple (4, 4, 6) is achievable by

distinct roots of the polynomial x4 − x− 1.
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[3] D. S. Dummit and R. M. Foote, Abstract algebra, Wiley, New York, 3rd ed., 2004.

[4] I. M. Isaacs, Degrees of sums in a separable field extension, Proceedings of the Amer-

ican Mathematical Society, 25 (1970), pp. 638–641.

[5] J. S. Milne, Fields and Galois theory (v5.10), 2022. Available at www.jmilne.org/

math/.

[6] P. Virbalas, Compositum of two number fields of prime degree, New York Journal of

Mathematics, 29 (2023), pp. 171–192.

https://kconrad.math.uconn.edu/blurbs/galoistheory/cubicquartic.pdf
www.jmilne.org/math/
www.jmilne.org/math/

	1. Introduction
	2. Preliminaries
	3. Proof of Main Theorem
	4. The Non-Abelian Case
	4.1. Example: (3, 3, 6)
	4.2. Example: (4, 4, 6)
	Acknowledgments

	References

